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ABSTRACT 

Due to soil-structure interaction effects, the dynamic response of pile-supported structures is 

strongly dependent on the behavior of soil-pile system. A rational design of such structures 

requires adequate analysis of the soil-pile system. At strong ground excitations behavior of 

soil surrounding the piles is nonlinear. In this paper, a simplified and computationally 

efficient technique is presented to incorporate the material nonlinearity of soil in the dynamic 

analysis of piles.  Approach is based on Green’s function formulation and a hyperbolic model 

is used to define the nonlinear stress-strain relationship for the soil. Effects of material 

nonlinearity of soil, on the free field response, the seismic response and the impedance 

functions of pile foundation, are investigated. Analysis is performed both for a single pile and 

a pile group. It was observed that both seismic response and impedance functions are 

significantly affected by the nonlinear behavior of the soil media. 

KEYWORDS: Soil-pile interaction, material nonlinearity, hyperbolic model, seismic 

response, impedance functions. 

 

INTRODUCTION 

The response of pile foundations is greatly affected by the behavior of soil media, in which piles 

are embedded. Considerable research has been conducted for the analysis of pile groups (e.g., 

Novak 1974, Wolf and Von Arx 1978, Kaynia and Kausel 1982, Gazetas 1984). In most of the 
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literature, the behavior of the soil is assumed elastic. During strong ground excitation such as 

caused by earthquakes this assumption is not valid. The performance of highway bridges 

(founded on piles) in recent strong earthquakes such as Kobe (1995), Kocaeli (1999), Chi-chi 

(1999), Bhuj (2001) demonstrated that nonlinear behavior of soil media should be taken into 

account in the design of pile foundations. 

A few researchers have incorporated material nonlinearity of soil in the dynamic analysis of pile 

foundations. Nogami et al. (1992) used a Nonlinear Beam on Winkler Foundation model in the 

time domain. In much of the previously published research, the nonlinearity in the soil is typically 

modeled using discrete system of mass, spring and dashpot.  Using such models, it is difficult to 

properly represent damping and inertial effects of continuous semi-infinite soil media. Further 

full coupling in the axial and lateral directions is difficult to consider. 

Recently few advanced plasticity based nonlinear soil models were employed in the time domain 

with finite element method to introduce material nonlinearity of soil. For example, Bentley and El 

Naggar (2000) considered Drucker-Prager soil model while Maheshwari et al. (2004 and 2005) 

employed HiSS soil model for this purpose. While these sophisticated models along with finite 

element technique are capable of modeling nonlinear behavior (plastic characteristics), however 

their computational demand is quite high. Further, these models are applicable for limited types 

of soils. 

 

         Figure 1. Hyperbolic Stress-Strain Relationship of Soil Media (Ishihara 1996) 

During moderate earthquakes, shear strains in soil media fall in the medium range (10
-5

 to 10
-3

) 

and the behavior of the soil becomes elasto-plastic. In this range of strains shear modulus and 

damping ratio, both of which depend on the level of strain are the key parameters to properly 

model the soil medium. In this range of strain behavior of soil medium can be best defined by 



hyperbolic stress-strain relationship (Fig. 1). Applicability of this model for representing different 

soils is widely demonstrated (e.g. Hardin and Drnevich 1972, Ishihara 1996). In this paper, this 

model is used to formulate the material nonlinearity of soil for the dynamic analysis of pile 

foundations.  

For the linear pile analysis a three-dimensional rigorous approach based on boundary integral 

method (Green’s function formulation) and proposed by Kaynia and Kausel (1982) is used. 

Hyperbolic soil model is incorporated using equivalent linearization technique (Watanabe 1978). 

Two types of sites namely homogeneous and inhomogeneous are considered in the analyses. 

First, effects of nonlinearity on free field response are observed.  Then effects of nonlinearity on 

seismic response and impedance functions of soil-pile system are investigated by comparing 

linear and nonlinear (equivalent linear) responses. Both a single pile and a pile group are 

considered. It is assumed that there is no loss of bond between soil and pile. 

 

Figure 2. Proposed Model for the Soil-Pile System for Nonlinear Analysis  
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MODELING 

Soil is a semi-infinite medium and modeled as a viscoelastic layered half-space (Fig. 2). 

Properties of soil may vary from layer to layer but they are assumed constant in a particular layer. 

Piles are also divided into segments with numbers and segment lengths matching that of the soil 

layers. The centroid of each segment and the pile tips define the number of nodes under 

consideration. Here for simplicity, it is assumed that pile ends (tips) are resting on the half-space 

and seismic excitation is due to vertically propagating shear waves. 

Both a single pile and a 2*2 pile group are considered in the analyses. For the group, 4 piles in a 

square configuration is used with center to center pile spacing s equal to 5d, where d is the 

diameter of the piles. Also for the group it is assumed that all pile heads are connected through a 

rigid massless pile cap.  

FORMULATION 

Three-dimensional dynamic analyses for the soil-pile system are performed for two situations. In 

first case, behavior of soil is assumed elastic. This linear analysis also used to determine the 

maximum shear strains in different layers of soil. In second case, the properties of the soil (in 

different layers) are modified using hyperbolic stress-strain relation. Second case is an iterative 

process (equivalent linearization) and repeated till soil properties get converged. These are 

described in detail below. 

Linear Analysis 

A rigorous three-dimensional approach proposed by Kaynia and Kausel (1982) has been used for 

the linear analysis. This approach fully takes into account the coupling between the horizontal 

and vertical modes of vibration. Effects of pile-soil-pile interaction, which is very important in 

the case of pile group, are also considered. A brief formulation for this approach is presented 

here, details can be found in Kaynia (1982).  

Three basic wave equations are solved through Fourier and Hankel transformations, and Green’s 

functions. Thus the displacement fields due to uniform barrel and disk loads associated with soil-

pile interaction forces are computed. These functions yield the dynamic soil flexibility matrix, 

which is combined with the pile flexibility matrix derived by solving the beam equations. After 

certain manipulations and applying boundary conditions, a relationship relating forces at pile 

heads (and pile tips) with the displacements at these points are obtained which is described as: 

 

 eeee PUKP 
 (1a) 

where Pe and Ue are the force and displacement vector respectively, referred to the end of the 

piles (i.e. pile heads and pile tips). Ke is an equivalent stiffness matrix representing the dynamic 

stiffness of the soil-pile system and eP  is a load vector due to seismic effects; these are defined 

as:  
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Where U  represents the seismic displacement in the medium which is equal to free field 

displacement, and matrices: Fs = Soil flexibility matrix when there is no pile in the medium; Fp = 

Pile flexibility matrix for clamped end piles; Kp = Pile stiffness matrix relating forces at the end 

of piles with end displacements;  = Shape function matrix relating displacement at any point on 

pile with the end displacements.  

Shear Strains 

The shear strains in the soil medium are required to check the nonlinear behavior of soil. Initial 

values of shear strains are determined assuming the elastic behavior of soil. Determination of the 

strains at a desired point requires the displacements at the point under consideration, as well as in 

the near vicinity of this point. This is performed using equations 1 with following additional 

steps: 

Soil-Pile-Interaction Force 

First using equation 1 the degrees of freedom related to pile tips are eliminated by applying 

appropriate boundary conditions at pile tips (e.g. zero displacements for end bearing piles; zero 

moments for floating piles). Next using the compatibility conditions between the pile heads and 

pile cap the seismic response of the pile foundation is determined using equation 1a with the fact 

that the resultant of pile head forces on pile foundation is zero. Subsequently, using compatibility 

conditions between the pile heads and pile cap, the displacements at the end of the piles Ue are 

determined. Then force vector P at soil-pile interface can be determined from: 
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Displacements in the vicinity of Pile 

Once the force vector P is known, the displacement at any point in the vicinity of pile in all the 

three directions can be computed using the relation: 
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where sF  denotes the soil-flexibility matrix derived for the distance at which displacements are 

desired when the source point of disturbance is the axis of the pile. Using Eq. 3, the 

displacements in soil media for a homogeneous site are derived as shown in Fig. 3 (shown for top 

five layers, out of 15 layers considered) where the horizontal distance is normalized with the 

radius r0 of the pile. It can be seen that displacement decreases away from the pile. 



 

Figure 3. Variation of Lateral Displacement in Different Layers with Horizontal Distance 

Shear Strains in the Soil Media 

Once the displacements are known at the various points in different directions, the shear strains 

for the planes perpendicular to z axis (vertical) are computed by the following relations: 
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where u, v and w are the displacements in the x, y and z directions, respectively, and the subscript 

denotes the location of points with subscript (0) for the point where strains are calculated. For 

computation, 0rzyx   is taken, where r0 is equal to the radius of the pile. Out of these 

shear strains, the larger one is selected to carry out the iterations. For horizontal vibration (caused 

by vertically propagating shear waves) the motion in the horizontal (x) direction being 

considerably higher, the major shear component comes out to be the first one. 

Fig. 4 shows the variation of shear strains (major) in the top five layers with the horizontal 

distance at a particular frequency. It can be observed that the shear strain diminishes as one goes 

away from the pile, hence the strain calculated at a distance equal to 1.5 r0 is taken as a 

representative strains in the soil media where strains are maximum in most of the layers. Strains 

just near the pile surface may be higher (than those computed at r = 1.5 r0) but it may have 

influence of the surface of the pile and for iterations strains in soil are required (not in pile), 

therefore this distance (r = 1.5 r0) is justified. 
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Figure 4. Variation of Shear Strain in Different Layers with Horizontal Distance 

Nonlinear Soil Model 

Nonlinearity of soil is treated using hyperbolic model, defined by following equations (Hardin 

and Drnevich 1972): 
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Where G and D represent the shear modulus and damping at a particular strain , while Gmax and 

Dmax represent the maximum values of G and D, respectively. r represents the reference strain for 

the given soil media (Fig. 1), Ishihara (1996). 

Equivalent Linearization Technique 

To perform the seismic analysis for harmonic excitations, seismic displacements in soil are 

computed at the midpoints of each layers with the given soil properties. Next, shear strains are 

computed in soil media in each layer at each frequency of loading and the process is repeated for 

all the frequencies under consideration. Out of these values of shear strains, maximum one (for 

each layer) is selected for the iterations. Using equations 5, new properties (shear modulus and 

damping) of the soil media for each layer are computed for a strain equal to 2/3 of the maximum 

shear strain (Kramer 1996). Since the properties of the soil medium are changed now, shear 
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strains are calculated again for the input motion. Properties are again modified for new strain 

values. The process is repeated until the properties of the soil medium get converged. The 

nonlinear (equivalent linear) response is the response computed using the converged properties of 

the soil medium. The criteria of convergence of soil properties are determined from the difference 

in the shear modulus in two consecutive cycles, and assumed to be stable if: 
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Computerization 

A FORTRAN code was developed to perform the analysis. The program has different modules, 

e.g. for free field response, impedance functions, pile head response etc. As the formulation for 

the analysis is in the frequency domain, to perform the analysis for transient motion (a real 

earthquake), the FFT and inverse FFT algorithm have been employed. Computation is done in 

double precision, and dynamic stiffness of soil that is generally complex requires use of the 

complex data type. Its real part represents the spring stiffness and imaginary part represents 

damping. Complex dynamic stiffness of the soil requires most of the other quantities such as 

impedance function and response to be complex. 

VERIFICATION OF THE MODEL AND ALGORITHM 

As a rigorous approach is used, verification of the model and algorithm developed is imperative. 

This is performed by comparing the results obtained from present algorithm (for linear analysis) 

with those published in literature. Fig. 5 shows the variation in dynamic stiffness with frequency 

for horizontal and vertical mode of vibration for a single pile and a 2*2 pile groups (with three 

different spacing). Both real and imaginary parts are shown in the dimensionless form. When 

these results are compared with those presented by Kaynia and Kausel (1982) a good agreement 

is found. Trend of the results are in very good agreement. Verification of model and algorithm 

was also performed for rocking and torsional modes of vibrations as well as for seismic response 

and all found in good agreement (Maheshwari 1997). 

DATA USED IN COMPUTATION 

Two types of sites namely homogeneous and inhomogeneous are considered in the analysis (Fig. 

6). For the homogeneous site, the initial shear modulus and the damping ratio from top to bottom 

is assumed constant. For inhomogeneous site, the initial shear modulus is assumed linearly 

increasing from top to bottom. The properties of the half-space are assumed to be the same for 

both sites. 



 

 

Figure 5. Variation in Horizontal (subscript x) and Vertical (subscript z) Dynamic 

Stiffnesses of a Single Pile and 2*2 Pile Groups (for three different spacings) with 

Frequency of Excitation (a0). Top figures show real part (stiffness -K) and bottom figures 

show imaginary part (damping - C). 

The soil is assumed to be typical sand with the following properties: 
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where Es, D, s and  are the initial Young’s modulus (at ground surface), initial damping ratio, 

the mass density and Poisson’s ratio for soil, respectively. For the hyperbolic model, following 

constants are used: 
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The piles are assumed to be of concrete with the following properties: 
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where Ep, p, L and d are the Young’s modulus, the mass density, length and diameter of pile, 

respectively. 

 

 

Figure 6. Soil Profiles used in the Analyses. 

EFFECTS OF NONLINEARITY 

Linear and nonlinear (equivalent linear) responses of the pile foundations are computed. Results 

are presented in following three sub-sections: 



Free Field Response 

Since nonlinearity of the soil media is the major concern, and the behavior of the free field soil 

greatly affects the overall response of the soil-pile system, therefore free field response is first 

investigated. This response is not only frequency dependent but also depends very much on the 

properties of the site.  

 

Figure 7 shows the linear and nonlinear free-field response (at the ground surface) when a 

harmonic excitation (of amplitude 0.2 cm) is applied laterally at the base of an inhomogeneous 

site. It can be seen that with reference to the natural frequency of the soil stratum, at low 

frequencies nonlinearity increases the response as much as 20% while at high frequencies it 

decreases the same as much as by 50%. Also, the peak value of nonlinear response occurs 

relatively at low frequency due to softening of soil. There is a cutoff frequency at which both 

linear and nonlinear responses are equal.  

 

To verify these results, the effect of shear modulus and damping is investigated in Figs. 7b and 

7c, respectively. In Fig. 7b, the response is derived for the converged value of the shear modulus 

while setting damping to original value. In Fig. 7c, the response is derived for the modified value 

of the damping while setting shear modulus to original value. It is clear from these figures that the 

shear modulus (which decreases during linearization process) increases the response but material 

damping (which increases during linearization process) decreases the response. Therefore, it is 

the combined effect of these two parameters that governs the response in Fig. 7a. 

 



Figure 7. Linear and Nonlinear Free Field Responses of Soil with Frequency of 

Excitation: (a) Response for an Inhomogeneous Site (b) Effect of Shear Modulus (c) 

Effect of Damping 

Seismic Response of the Pile Foundation 

The seismic excitation causes horizontal displacement and rotation of the pile cap. The amplitude 

of the applied harmonic excitation should be high enough to cause shear strains such that it 

induces the material nonlinearity in soil. Figs. 8a and 8b shows the linear and nonlinear response 

(at pile head) of a single pile for inhomogeneous and homogeneous sites, respectively. The trend 

of the results is similar to that observed with the free field response. Nonlinearity is increasing the 

response at lower frequencies and decreasing at higher frequencies. Also, due to nonlinearity, the 

peak value of the response occurs at a lower frequency. It can also be observed that effect of 
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nonlinearity is higher for inhomogeneous site where response is increased by about 30% at low 

frequencies of excitation. For homogeneous site many peaks are introduced in the response due to 

sharp change in the stiffness at the junction of soil layers and half space (Wolf 1985). These 

peaks appeared to decrease the effect of nonlinearity. 

 

Figure 8. Linear and Nonlinear Seismic Response for a Single Pile (a) For an 

Inhomogeneous Site (b) For a Homogeneous Site 

Figs. 9a and 9b show this comparison for a 2*2 pile group where the response is observed at the 

pile cap. Spacing between piles is assumed to be five times the diameter of the pile. The results 

have similar trend, as was the case for a single pile, except that more peaks are introduced due to 

interaction effects. From Figs. 8a,b and 9a,b it can also be observed that effect of material 

nonlinearity is larger for a single pile than for a pile group, particularly for a homogeneous site. It 

appears that interaction effect among piles is diminishing the effect of nonlinearity. Similar 

conclusion was derived by Maheshwari et al. (2004) using a finite element model in the time 

domain. 
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Figure 9. Linear and Nonlinear Seismic Response for a 2*2 Pile Group  (a) For an 

Inhomogeneous Site (b) For a Homogeneous Site 

Impedance Functions 

Impedance functions are the dynamic stiffness of the soil-pile system at the pile cap. The 

derivation of these functions does not require seismic motion, and thus free field motion is not 

needed. A harmonic excitation of given force amplitude is applied at the pile head in the direction 

in which impedance function is sought. The amplitude of this excitation should be high enough to 

cause nonlinearity in the soil. Impedance functions can be obtained by applying a load (in a 

specified direction) on the pile head or pile cap and noting the complex displacement (in the 

direction of the load) at the same point. The complex impedance function is defined as: 
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where P0 and U0 are the amplitude of the force excitation and complex displacement amplitude, 

respectively for a particular direction for which impedance function is sought. The impedance 

function obtained from Eq. 7a is a complex quantity and can be separated in to real 

(corresponding to stiffness) and imaginary parts (corresponding to damping). Both are frequency 

dependent i.e. 
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Figure 10. Linear and Nonlinear Impedance Functions of a Single Pile (Inhomogeneous 

Site) 
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Figure 11. Linear and Nonlinear Impedance Functions of a 2*2 Pile Group 

(Inhomogeneous Site) 

Alternatively this impedance function can be written as: 
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where    is equivalent damping ratio, and using Eqs. 7b and 7c, it can be derived as: 
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This equivalent damping ratio is frequency dependent and represents a measure of the equivalent 

damping (it includes effect of both material and radiation damping) in the soil-pile system, in 

contrast to the frequency independent hysteretic damping ratio of the soil media only. 

Fig. 10 shows the real and imaginary parts of the impedance functions for lateral vibration of a 

single pile for both the linear and nonlinear cases. Ksx represents the dynamic stiffness of the soil-

pile system of a single pile referred to its head. It can be noted from this figure that nonlinearity 

decreases both real and imaginary parts of the soil-pile system. But reduction in the real part 

(stiffness) is much larger compared to that in the imaginary part (damping), where nonlinearity is 

reducing the stiffness as much as by 60%. Also it can be observed that stiffness is reducing at all 

frequencies of excitation and variation with frequency is not significant as observed for the 

seismic response. Similar observation was made by Maheshwari et al. (2004). Also Fig. 10c 

shows the equivalent damping ratio (derived using equation 7d) for the linear and nonlinear cases. 

As expected from the real and imaginary part, this has higher values for the nonlinear case as 

compared to the linear case at all frequencies. 

Figure 11 shows the impedance functions for a 2*2 pile group with pile spacing five times the 

diameter of the pile. Results show the same trend as observed in the case of a single pile but at 

low frequencies effect of nonlinearity was not significant. Also the equivalent damping ratio is 

higher for nonlinear case except for the certain frequencies where there is not much change in the 

real part of the stiffness.  

These results can be explained by the fact that the softening of soil occurs due to nonlinear 

effects. When nonlinear effects of the soil are considered, then the value of shear modulus 

decreases for higher values of shear strain decreasing the impedance functions of the soil-pile 

system. At higher values of strains, the damping ratio of the soil media increases, increasing 

equivalent damping ratio of the soil-pile system. 

SUMMARY AND CONCLUSIONS 

In this paper a new approach is proposed to model the material nonlinearity of soil media for 

dynamic analysis of pile foundations. The following conclusions may be derived with the results 

presented: 

Effects of nonlinearity on the free field response depend very much on the frequency of 

excitation. At low frequencies response is increased as much as by 20%. This free field response 

has a significant effect on the total response of the soil-pile system. 

In general at lower frequencies (as compared to the natural frequency of the soil-pile system), 

material nonlinearity of the soil increases the seismic response as much as by 30%. At higher 

frequencies the reverse is true. Also, the peak in the nonlinear response occurs at a lower 

frequency as compared to the linear case. This is valid for a single pile as well as for a pile group. 

 

1. Material nonlinearity reduces both the real and imaginary parts of the dynamic stiffness but the 

reduction in the real part is comparatively larger. Due to nonlinearity, the equivalent damping ratio 



of the soil-pile system increases. Effect of nonlinearity on the real part of the dynamic stiffness is 

not much changed with frequency of excitation. 

 

2. In general, effect of nonlinearity was greater for a single pile, compared to a 2*2 pile group. It 

appears that group effect diminishes the effect of nonlinearity. 

 

Since seismic response and dynamic stiffness are very important parameters in the design of pile 

foundations, analyses presented here may have wide practical significance. For example, the low 

range of frequency where seismic response is increased as much as 30% due to nonlinearity is the 

range of interest for earthquake loading for a soil-pile system. The results presented have direct 

implications in the design of pile foundations or in general design of pile supported structures. 

The design will be more rational and safe if the effects of material nonlinearity are considered. 
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